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1. Introduction
Graph theory, a very important part of chemical graph theory is used to model

the properties of molecular structures. Cheminformatics, a merger of chemistry,
mathematics and information science deals with the quantitative structure property
relationships (QSPR) which has emerged as a tool in the medical and chemical field
as it helps to predict the physico-chemical properties of compounds. In particular,
this branch studies the physical and chemical properties of chemical compounds.
These molecular structures are studied using a tool from graph theory. This af-
fordable tool is the topological index. It is used to mathematically compute the
value for a graph to characterize its topology. It forms a very important part
of graph theory and is widely used in the fields of mathematical chemistry and
chemical graph theory. Thus, topological indices of graph theory have gained wide
acceptance as a tool to perform the analysis of molecular structures. A rich theory
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for topological indices is collected in [4, 5, 6, 8, 9]. They are classified as degree
based and distance based topological indices. The first topological index evolved
was Wiener index based on the distance concept and was defined by Wiener in
1947 to study the boiling points of alkanes. Later degree based topological indices
were developed. The oldest degree based topological index was defined by Randić
in 1975. Randić index R(G) is [12]

R(G) =
∑

uv∈E(G)

1√
dG(u)dG(v)

.

Thereafter, another pair of degree based topological indices were defined by Gut-
man and named them as Zagreb indices came into existence [4, 5].
The first Zagreb index M1(G) i.e.,

M1(G) =
∑

uv∈E(G)

(dG(u) + dG(v)) .

and second Zagreb index M2(G) i.e.,

M2(G) =
∑

uv∈E(G)

dG(u)dG(v).

These topological indices have attracted mathematicians for longer period as they
have wide applications in the study of molecular structures. Many topological
indices have been developed since then. For two graphs G and H, a graph G
on n vertices having largest possible number of edges and not containing H as a
subgraph is said to be an extremal graph [3]. The prime focus these days is to find
the extremal results and extremal graphs for topological indices [1, 2, 13]. With
this motivation we investigate some extremal results and extremal graphs for the
recently defined KCD indices [10].

2. Preliminaries and Definitions
All the graphs considered in this paper are simple, connected and finite. For

undefined terminologies we direct reader to [7].
Let G represent a graph with |V (G)| = p and |E(G)| = q as vertex and edge set

respectively. dG(u) is the degree of a vertex u in G and dG(e) = dG(u) + dG(v)− 2
is the edge degree. The distance of a vertex u to the farthest vertex in G is its
diameter D(G).

The KCD indices defined by Mirajkar et al. [10] are

KCD1(G) =
∑

e=uv∈E(G)

((
dG(u) + dG(v)

)
+ dG(e)

)
(1)
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KCD2(G) =
∑

e=uv∈E(G)

(
dG(u) + dG(v)

)
dG(e). (2)

Elaborated details for these concepts are available in [10, 11].

The graphs used for investigation are class of unicyclic graphs [1]. Cn is a cycle
of order n, Pm is a path of size m and Sm is a star graph of size m.

For n ⩾ 3,m ⩾ 3 and w ⩾ 1, let
⋃

= {Cn,W (n,m,w), X(n,m,w), Y (n,m,w),
Z(n,m,w)} be the set of uncyclic graphs. The first member of the set

⋃
is the

cycle Cn. The next member isW (n,m,w) representing a graph with a cycle Cn and
w copies of Pm incident to a unique vertex of Cn. X(n,m,w) is another member
of
⋃

consisting of w copies of Pm attached to each vertex of Cn. Y (n,m,w) from⋃
denotes the graph with w copies of star graph Sm attached to only one vertex

of Cn. The last member Z(n,m,w) of
⋃

is the graph with w copies of Sm incident
to each vertex of Cn. The figure 1 depicts the members of

⋃
.

Figure 1: Unicyclic graphs of
⋃
.
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3. Basic Results

Basic lemmas utilized in the proof of main results are proved in this section.

Lemma 3.1. For integers a ⩾ 3, b ⩾ 3 and c ⩾ 1, the functions defined below

1. f1(b, c) = −2c(c+ 3b+ 1)

2. g1(b, c) = −2c(b2 + c+ 3)

3. h1(a, b, c) = −2ac(3b+ c+ 1)

4. l1(a, b, c) = −2ac(b2 + c+ 3)

are strictly decreasing.
Proof.
1. Due to the fact that,

∂f1
∂b

= −6c < 0

and
∂f1
∂c

= −2(2c+ 3b+ 1) < 0

we conclude f1(b, c) as a strictly decreasing function (S. D. F.) for every b ⩾ 3 and
c ⩾ 1.
2. Further,

∂g1
∂b

= −4bc < 0

and
∂g1
∂c

= −2(2c+ b2 + 3) < 0

implying g1(b, c) is a S. D. F. for every b ⩾ 3 and c ⩾ 1.
3. Next,

∂h1

∂a
= −2(c2 + 3bc+ c) < 0

∂h1

∂b
= −6ac < 0

and
∂h1

∂c
= −2(2ac+ 3ab+ a) < 0

indicating h1(a, b, c) is a S. D. F. for every a ⩾ 3, b ⩾ 3 and c ⩾ 1.
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4. Now,

∂l1
∂a

= −2(cb2 + c2 + 3c) < 0

∂l1
∂b

= −4abc < 0

and
∂l1
∂c

= −2(ab2 + 2ac+ 3a) < 0

this confirms l1(a, b, c) is a S. D. F. for every a ⩾ 3, b ⩾ 3 and c ⩾ 1.

Lemma 3.2. For integers a ⩾ 3, b ⩾ 3 and c ⩾ 1, the functions defined below

1. f2(b, c) = 2c(3b− b2 − 2)

2. g2(a, c) = (2c2 + 6ac+ 2c)(1− a)

3. h2(a, b, c) = 2c2(1− a) + 6c(b− a) + 2c(1− ab2)

are strictly decreasing.
Proof.
1. Since,

∂f2
∂b

= 6c− 4cb < 0

and
∂f2
∂c

= 6b− 2b2 − 4 < 0

this concludes that, f2(b, c) is a S. D. F. for every b ⩾ 3 and c ⩾ 1.
2. Also,

∂g2
∂a

= 4c− 2c2 − 12ca < 0

and
∂g2
∂c

= 4c+ 4a− 4ac− 6a2 + 2 < 0

implying, g2(a, c) is a S. D. F. for every a ⩾ 3 and c ⩾ 1.
3. Next,

∂h2

∂a
= −(2c2 + 6c+ 2b2c) < 0

∂h2

∂b
= 6c− 4abc < 0

and
∂h2

∂c
= 4c− 4ac+ 6b− 6a+ 2− 2ab2 < 0
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this implies, h2(a, b, c) is a S. D. F. for every a ⩾ 3, b ⩾ 3 and c ⩾ 1.

Lemma 3.3. For integers a ⩾ 3, b ⩾ 3 and c ⩾ 1, the functions defined below

1. f3(a, b, c) = 2c2(1− a) + 2cb(b− 3a) + 2c(3− a)

2. g3(a, b, c) = (2c2 + 2cb2 + 2c)(1− a)

are strictly decreasing.
Proof.
1. Consider,

∂f3
∂a

= −2(c2 + 3bc+ c) < 0

∂f3
∂b

= 4bc− 6ac < 0

and
∂f3
∂c

= 4c− 4ac+ 2b2 − 6ab− 2a+ 6 < 0

implying f3(a, b, c) is a S. D. F. for every a ⩾ 3, b ⩾ 3 and c ⩾ 1.
2. Since,

∂g3
∂a

= −2(c2 + b2c+ c) < 0

∂g3
∂b

= 4bc− 4abc < 0

and
∂g3
∂c

= 4c+ 2b2 + 2− 4ac− 4abc− 2a < 0

indicating g3(a, b, c) is a S. D. F. for every a ⩾ 3, b ⩾ 3 and c ⩾ 1.

Lemma 3.4. For integers a ⩾ 3, b ⩾ 3 and c ⩾ 1, the function defined as

f4(a, b, c) = 2ac(3b− b2 − 2)

is strictly decreasing.
Proof. Due to the fact that,

∂f4
∂a

= 6bc− 2b2c− 4c < 0

∂f4
∂b

= 6ac− 4abc < 0

and
∂f4
∂c

= 6ab− 2ab2 − 4a < 0
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we conclude that, f4(a, b, c) is a S. D. F. for every a ⩾ 3, b ⩾ 3 and c ⩾ 1.
TheKCD indices for the class of unicyclic graphs from

⋃
are determined below.

Lemma 3.5. For n ⩾ 3,m ⩾ 3 and w ⩾ 1, the first KCD index of unicyclic
graphs are

KCD1(Cn) = 6n (3)

KCD1(W (n,m,w)) = 2
(
w2 + 3wm+ w + 3n

)
,m = D(Pm) (4)

KCD1(Y (n,m,w)) = D(Sm)
(
w2 + wm2 + 3w + 3n

)
(5)

KCD1(X(n,m,w)) = 2n
(
w2 + 3wm+ w + 3

)
,m = D(Pm) (6)

and KCD1(Z(n,m,w)) = nD(Sm)
(
wm2 + w2 + 3w + 3

)
. (7)

Proof. Proof follows from the definition of first KCD index given by Eq. 1.

Lemma 3.6. For n ⩾ 3,m ⩾ 3 and w ⩾ 1, the second KCD index of unicyclic
graphs are

KCD2(Cn) = 8n (8)

KCD2(W (n,m,w)) = w3 + 8w2 + 8wm+ 7w + 8n,m = D(Pm) (9)

KCD2(Y (n,m,w)) = wm3 + w3 +D(Sm)
(
w2m+ 2w2 + 4n

)
+wm+ 13w . (10)

Proof. Proof follows from definition of second KCD index given by Eq. 2.

4. Main Results
In this section, we study the extremal unicyclic graphs from set

⋃
and also

obtain some extremal results in terms of diameter using KCD indices.

Theorem 4.1. For n ⩾ 3,m ⩾ 3 and w ⩾ 1, the ordering of first KCD index
among the members of

⋃
is

KCD1(Cn) < KCD1(W (n,m,w)) < KCD1(Y (n,m,w)) <

KCD1(X(n,m,w)) < KCD1(Z(n,m,w)).

Proof. The proof is developed in the form of Cases 1 to 4 using lemma 3.5 and the
fact that m = D(Pm) in Eqs. (4), (6) and D(Sm) = 2 for Eqs.(5), (7) as follows.

Case 1. Amongst the unicyclic graphs from the set
⋃

the first minimum value for
first KCD index is obtained for Cn.
Now,

KCD1(Cn)−KCD1(W (n,m,w)) = −2w(w + 3m+ 1) [using Eqs. (3) and (4)]
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By applying lemma 3.1 (1), we get

KCD1(Cn) < KCD1(W (n,m,w))

where W (n,m,w) are the extremal unicyclic graphs for Cn.
Next,

KCD1(Cn)−KCD1(Y (n,m,w)) = −2w(w +m2 + 3) [using Eqs. (3) and (5)]

By applying lemma 3.1 (2), we get

KCD1(Cn) < KCD1(Y (n,m,w))

here Y(n,m,w) are the extremal unicyclic graphs for Cn.
Further,

KCD1(Cn)−KCD1(X(n,m,w)) = −2nw(w + 3m+ 1) [using Eqs. (3) and (6)]

By applying lemma 3.1 (3), we get

KCD1(Cn) < KCD1(X(n,m,w))

with X(n,m,w) being the extremal unicyclic graphs for Cn.
Lastly,

KCD1(Cn)−KCD1(Z(n,m,w)) = −2nw(m2 + w + 3) [using Eqs. (3) and (7)]

By applying lemma 3.1 (4), we get

KCD1(Cn) < KCD1(Z(n,m,w))

where Z(n,m,w) are the extremal unicyclic graphs for Cn.
Thus , KCD1(Cn) < KCD1(G) for every G ∈

⋃
−Cn.

Case 2. The second minimum value for first KCD index amongst the members
of
⋃

is obtained by the comparision of KCD1(W (n,m,w)) with first KCD index
of remaining members of

⋃
other than Cn.

Now,

KCD1(W (n,m,w))−KCD1(Y (n,m,w)) = 6wm− 2wm2 − 4w

[using Eqs. (4) and (5)]
By applying lemma 3.2 (1), we have

KCD1(W (n,m,w)) < KCD1(Y (n,m,w))
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where Y(n,m,w) are the extremal unicyclic graphs for W (n,m,w).
Next,

KCD1(W (n,m,w))−KCD1(X(n,m,w)) = (2w2 + 6wn+ 2w)(1− n)

[using Eqs. (4) and (6)]
By applying lemma 3.2 (2), we have

KCD1(W (n,m,w)) < KCD1(X(n,m,w))

with X(n,m,w) being the extremal unicyclic graphs for W (n,m,w).
Finally,

KCD1(W (n,m,w))−KCD1(Z(n,m,w)) = 2w2(1− n) + 6w(m− n) + 2w(1− nm2)

[using Eqs. (4) and (7)]
By applying lemma 3.2 (3), we have

KCD1(W (n,m,w)) < KCD1(Z(n,m,w))

here Z(n,m,w) are the extremal unicyclic graphs for W (n,m,w).
Case 3. The third minimum value for first KCD index amongst the members of

⋃
is acquired by comparing KCD1(Y (n,m,w)) with first KCD index of X(n,m,w)
and Z(n,m,w).
Now,

KCD1(Y (n,m,w))−KCD1(X(n,m,w)) = 2w2(1− n) + 2wm(m− 3n) + 2w(3− n)

[using Eqs. (5) and (6)]
By using lemma 3.3 (1), gives

KCD1(Y (n,m,w)) < KCD1(X(n,m,w))

where X(n,m,w) are the extremal unicyclic graphs for Y (n,m,w).
Also,

KCD1(Y (n,m,w))−KCD1(Z(n,m,w)) =
(
2w2 + 2wm2 + 6w

)
(1− n)

[using Eqs. (5) and (7)]
By using lemma 3.3 (2), gives

KCD1(Y (n,m,w)) < KCD1(Z(n,m,w))
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with Z(n,m,w) being the extremal unicyclic graphs for Y (n,m,w).
Case 4. The fourth minimum value for first KCD index amongst the mem-
bers of

⋃
is acquired by comparing KCD1(X(n,m,w)) with first KCD index of

Z(n,m,w).
Now,

KCD1(X(n,m,w))−KCD1(Z(n,m,w)) = 2nw
(
3m−m2 − 2

)
[using Eqs. (6) and (7)]

By using lemma 3.4, we get

KCD1(X(n,m,w)) < KCD1(Z(n,m,w))

here Z(n,m,w) being the extremal unicyclic graphs for X(n,m,w).
The discussions from Case 1 to Case 4 proves the theorem.

Theorem 4.2. For n ⩾ 3,m ⩾ 3 and w ⩾ 1, the ordering of second KCD index
among the members of

⋃
is

KCD2(Cn) < KCD2(W (n,m,w)) < KCD2(Y (n,m,w)).

Proof. By considering similar arguments used to prove theorem 4.1 and using
lemma 3.6 we obtain the required result.

Corollary 4.3. For a graph G,

KCD1(G)−KCD1(G− v) > 0 and KCD2(G)−KCD2(G− v) > 0

Theorem 4.4. For a tree T having order n ⩾ 4 and diameter D(T )

KCD1(T ) ⩾ (5n− 9) +D(T ) and KCD1(T ) ⩾

(
2(3n− 5)

n− 1

)
D(T ).

Proof. Let T be a tree.
For T to be a path, KCD1(T ) = 6n− 10 and D(T ) = n− 1.
For T to be other than path, D(T ) ⩽ n − 2 and T has minimum three vertices
with degree 1. For longest path P = v0v1...vD in T , it has at least one vertex
u having degree 1 which is not present in P . Now, consider the deletion of the
vertices having degree 1 not present in P from T , until T results into path P . We
assume u1, u2, ..., us to be the vertices in the Deleted order not present in P. By
corollary 4.3 this results as

KCD1(T ) > KCD1(T − u1) > ... > KCD1(T −
s∑

i=1

ui) = KCD1(P ) = 6n− 10
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D(T ) = D(T − u1) = ... = D(T −
s∑

i=1

ui) = D(P ).

Thus,

KCD1(T )−D(T ) > KCD1(P )−D(T )

⩾ (6n− 10)− (n− 1)

⩾ (5n− 9). (11)

and

KCD1(T )

D(T )
>

KCD1(P )

D(P )

⩾
6n− 10

n− 1

⩾
2(3n− 5)

n− 1
. (12)

simplification of inequalities (11) and (12) generates required results.

Theorem 4.5. For a tree T having order n ⩾ 4 and diameter D(T )

KCD2(T ) ⩾ (7n− 17) +D(T ) and KCD2(T ) ⩾

(
2(4n− 9)

n− 1

)
D(T ).

Proof. By considering the definition of second KCD index defined in Eq. 2 and
similar arguments used to prove theorem 4.4 we obtain the required results.

Remark 4.6. Equality for theorems 4.4 and 4.5 is attained when T is a path.
Further, path becomes extremal graph of star graph for these theorems.

4. Conclusion
As the study of topological indices is mainly based on degree and distance

concept of graphs, in this article we have examined some extremal results in terms
of the diameter for class of extremal unicyclic graphs for KCD indices. However,
class of bicyclic graphs, tricyclic graphs and others can be further studied as an
open problem for these concepts.
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[2] Ashrafi, A. R., Došlić, T. and Hamzeh, A., Extremal graphs with respect to
the Zagreb coindices, MATCH Commun. Math. Comput. Chem., 65 (2011),
85-92.

[3] Diestel, R., Graph Theory, Springer, 5th edition, 2016.
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